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23 October 2020

Source Discussed problem/solutions with Zach Bryhtan.

Problem 1. Skills developed: Using short exact sequences in conjunction with length and chains.

In this problem we generalize some familiar facts about dimensions of vector spaces to length
of modules. Recall that the length of a module M is the length of a composition series of
M , if one exists, and∞ or undefined if M does not have a composition series. This problem
only deals with finite length modules.

(a) Prove that “length is additive on short exact sequence”: Let 0 → A → B → C → 0 be
a short exact sequence of left R−modules, and suppose that B is of finite length. Prove that
`(B) = `(A) + `(C).

(b) Use (a) to prove the “sum-intersection formula’ for modules of finite length: If K,N ⊂
M are submodules and have finite length, then

`(K +N) + `(K ∩N) = `(K) + `(N).

The point of the exercise is use (a) to prove this – do not try t do it explicitly considering
chains in all these spaces.

Thms/Defs 1. A composition series of a module M is a finite chain in M such that each factor is a simple
module.

2. (i) I = {1, ..., n}, M1 ⊂M2 ⊂ ... ⊂Mn ⊂M .

(ii) (Ascending Filtrations) 0 ⊂M1 ⊂M2 ⊂M3 ⊂ ....

(iii) (Descending Filtrations) M ⊃M1 ⊃M2 ⊃M3 ⊃ ...

2b. The factors of a chain are the quotients {Mi+1/Mi

Mi

} (in (i) and (ii)) and { Mi

Mi+1

} in (iii).

2c. Suppose M0 = 0 ⊂M1 ⊂M2... ⊂Mn =M . The length of this chain is n.

2d. A refinement of a chain is one which contains the first as a subsequence.
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3. (Rotman) Jordan-Holder Theorem: Any two composition series of a module M are equiv-
alent. In particular, the length of a composition series, if one exists, is an invariant of M ,
called the length of M .

3b. Corollary - If module M has length n, then every chain of submodules of M has length≤ n.

Proof (a) Let 0→ A
α−→ B

β−→ C → 0 be a short exact sequence of left R−modules.

Suppose `(B) = n <∞. Then, it has a composition series:

B0 = 0 ≤ B1 ≤ B2.... ≤ Bn = B,

where each factor is a simple module.

Since B has finite length, A and C also have finite length. This follows since:

(i) α : A→ B is injective and length ofB is finite, `(A) ≤ `(B) = n. Denote `(A) = a < n.

(ii) β : B → C is surjective, thenC ∼= B/A by the First Isomorphism theorem and exactness
of the sequence. Since `(B), `(A) < ∞, we then also have that `(C) is finite. Denote
`(C) = c < n.

Because A is a module of finite length a, we can create the following composition series:

A0 = 0 ≤ A1 ≤ A2.... ≤ Aa = A

Since im (α) ⊂ B, we can embed this composition series in the composition series of B:

A0 = 0 ≤ A1 ≤ A2.... ≤ Aa = A = Ba ≤ ... ≤ Bn = B

We will quotient every submodule in the composition series by A. (The motivation is that
we want to look at the composition series of C ∼= B/A). Then, we get the following series:

A0/A = 0 ≤ A1/A ≤ ...︸ ︷︷ ︸
0

≤ Aa/A = A/A ≤ Ba/A ≤ Ba+1/A ≤ ... ≤ Bn/A = B/A ∼= C

Note, each factor is a simple module, so this is a composition series:

A/A ≤ Ba/A ≤ Ba+1/A ≤ ... ≤ Bn/A = B/A ∼= C

This follows since
Ba/A

A/A
= Ba/A and

Bi+1/A

Bi/A
= Bi+1/Bi (by the third isomorphism

theorem).

Since B/A and Bi+1/Bi were simple,
Ba/A

A/A
and

Bi+1/A

Bi/A
are simple for each a ≤ i ≤ n

and this is a composition series for C ∼= B/A.
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Hence, `(c) = c = n− a, where n = `(B), a = `(a).

∴, `(B) = `(A) + `(C).

(b) Let K,N ⊂M are submodules and have finite length.

Suppose the short exact sequence is split. Consider the following sequence:

0→ K
i−→ K ⊕N π2−→ N → 0

Since K,N of finite length ⇐⇒ K ⊕ N is of finite length. Now, we can apply part (a) to
conclude that `(K ⊕N) = `(K) + `(N).

Similarly, consider the chain:

0→ K ∩N → K ⊕N → K +N → 0

By part (a), we have `(K ⊕N) = `(K ∩N) + `(K +N).

Putting these two together, we get the following:

`(K ∩N) + `(K +N) = `(K ⊕N)

= `(K) + `(N)

⇒ `(K ∩N) + `(K +N) = `(K) + `(N)
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Problem 2. Skills developed: using Noetherian and Artinian properties together with homomorphisms.

This problem generalizes the fact that a linear operator on a finite dimensional vector space
is injective iff it is surjective iff it is an isomorphism. Prove (a) carefully. For (b), just briefly
indicate the main ideas of a proof ( a few sentences)

(a) Let M be a Noetherian left R−modules, and f : M → M a surjective homomorphims.
Show that f must be an isomorphism.

(b) Let N be an Artinian left R−module, and g : N → N an injective homomorphism.
Show that g must be an isomorphism.

Defs/Thms 1a. A ring is a (left/right/2-sided) Noetherian ring if it has ACC on (left/right/2-sided ideals) ,
i.e. R has ACC as R−module.

1b. A ring is (left/right/2-sided) Artinian if it has DCC on (left/right/2-sided ideals), i.e. R has
DCC as R−module.

2a. A left R-module M has an ascending chain condition (ACC) if every ascending chain of
submodule

0 ⊂M1 ⊂M2 ⊂M3... ⊂M stabilizes, meaning ∃N such that Mi =Mi+1 ∀i ≥ N .

2b. (Just like ACC above) If every descending chain of submodules stabilizes.

3. Let 0 → A → B → C → 0 be a short exact sequence of R−modules. Then, B is
Noetherian. ⇐⇒ A,C both Noetherian (Similarly for Artinian).

3b. If R is a left Noetherian ring, every finitely generated left R− module is Noetherian.

4. (Pg. 458 D and F) Theorem 1 Let R be a ring and let M be a left R- module. Then, the
following are equivalent:

(1) M is a Noetherian R-module.

(2) Every nonempty set of submodules of M contains a maximal element under inclusion.

(3) Every submodule of M is finitely generated.

Proof SupposeM is a Noetherian leftR−module, and f :M →M is a surjective homomorphism.

We need to show that f is also injective, to conclude that f is an isomorphism. We will do
this by showing that the kernel is trivial.

Since M is Noetherian, it is finitely generated (since every submodule of M is finitely gen-
erated and M is a submodule of itself) i.e. there exists a1, a2, ..., an ∈ M such that for any
x ∈M , there exist r1, r2, ..., rn ∈ R with x = r1a1 + r2a2 + ...+ rnan.

Here {a1, a2, ..., an} is the minimal set of generators of M .

Since f :M →M is a surjective, for each m2 ∈M, ∃m1 ∈M such that f(m1) = m2.

Let m1 = r1a1 + r2a2 + ...+ rnan. Then, we have the following:
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ker(f) = {m1 ∈M |m2 = 0}
= {m1 ∈M |f(m1) = 0}
= {m1 ∈M |f(r1a1 + r2a2 + ...+ rnan) = 0}
= {m1 ∈M |f(r1a1) + f(r2a2) + ...f(rnan) = 0} (since f is a R-module homomorphism)
= {m1 ∈M |r1f(a1) + r2f(a2) + ...rnf(an) = 0}

Since {a1, ..., an} is the minimal set of generators and f is surjective, it is necessarily the
case that each f(ai) 6= 0. Then it must be the case each ri is 0, 0 < i ≤ n.

Hence, {m1 ∈M |f(m1) = 0} ⇐⇒ {m1 ∈M |m1 = 0}. Therefore, the kernel is trivial.

(b) Since N is an Artinian left R-module, by definition, it has a descending chain condition as
R-module. Consider the following descending chain:

N ⊃ g(N) ⊃ g(g(N)) ⊃ ... ⊃ g(g(....g(N))︸ ︷︷ ︸
n times

⊃ .... ⊃ 0

Denote g(g(....g(N))︸ ︷︷ ︸
n times

= gn.

Since it stabilizes, ∃ N such that gi(N) = gi+1(N) = 0 ∀i ≥ N .

Let n2 be an arbitrary element of N . Then, gi(n) ⊂ gi+1(n). Because ∀i ≥ N , the chain
stabilizes, ∃ n1 ∈ N such that gi(g(n1)) = gi(n2).

Since g is injective, this means that g(n1) = n2. ∴, g is surjective and thus, an isomorphism.

(b) (Alternatively - not to be graded. I think this works but not sure if I need to elaborate more
on the choice of n1).

Let N be an Artinian left R−module. It is given that g : N → N is an injective homomor-
phism. We need to show that g is an surjective.

Fact: An Artinian Ring is a Noetherian Ring.

Similar to part (a), a Noetherian ring is finitely generated. So, N can be finitely generated
with {b1, b2, ..., bn} as the minimal set of generators of M .

Let n2 be an arbitrary element of N . Show ∃ n1 ∈ N such that f(n1) = n2.

We can write n2 as follows: n2 = r21b1 + r22b2 + ...+ r2nbn.

Then, we can find n1 ∈ N such that:

f(n1) = f(r11b1 + r12b2 + ...r1nbn)

= r11f(b1) + r12f(b2) + ...+ r1nf(bn)
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In particular, since f is injective, for bi 6= bj for 0 ≤ i, j ≤ n, f(bi) 6= f(bj).

Hence,since {b1, ..., bn} are the minimal set of generators of N , f(b1), ...f(bn) will map to
b1, ..., bn.

Therefore, we have found n1 such that f(n1) = n2. Since n2 was arbitrary, we have that f
is surjective and thus, an isomorphism.
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Problem 3. Skills developed: computation of Jacobson radical in the familiar setting of quotients of
polynomial rings

Let K be a field, R−K[x] the polynomial ring in one variable over K, and I ⊂ R an ideal.
Describe the Jacobson radical J(R).

Thms/Defs 1. For a ring R, the Jacobson radical J(R) ⊂ R is the intersection of all maximal left ideals
of R.

1b. Recall that a maximal (left) ideal of R is a proper ideal of R not contained inside any ideal
besides itself and R.

2. For x ∈ R, the following are equivalent:

(i) x ∈ J(R)
(ii) ∀r ∈ R, 1− rx has left inverse

(iii) x ∈ annR(R/I) ∀ maximal left ideals I ⊂ R.

(iv) x ∈ annS ∀ simple R−modules S .

3. (pg.457 Corollary 2) If R is a P.I.D., then every nonempty set of ideals of R has a maximal
element and R is a Noetherian ring.

4. Every nonzero prime ideal in a PID is a maximal ideal.

5. Assume R is commutative. The ideal M is a maximal ideal iff R/M is a field.

6. In a PID, a nonzero element is a prime iff it is irreducible.

Proof Let R = K[x]/I , where I ⊂ K[x] is an ideal.

Let r(x) ∈ K[x]/I be arbitrary, and suppose p(x) ∈ J(R) for p(x) ∈ R.
Then, by the theorem stated above, 1− r(x) · p(x) has a left inverse.

In particular, the inverse needs to be an element of K×/(I ∩K). We have two cases here:

(i) Suppose I∩K = 0. Then,K×/(I∩K) = K×. The inverse here is 1. So, 1−r(x)·p(x) =
1⇒ p(x) = 0.

Since p(x) ∈ K[x]/I and p(x) = 0, we have that p(x) ∈ I .

Hence, J(R) = J(K[x]/I) = J(K[x])/I .

(ii) Now suppose that I ∩K 6= 0⇒ I ∩K = K. Then, K×/(I ∩K) = 0⇒ J(R) = {0}.
(Source: Zach for inspiration on this approach)

Attempt 2 (Not for a grade)

Since K is a field, the polynomial ring K[x] is a Principal Ideal Domain (PID).

(i) Suppose K is finite.
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Fact There exists irreducible polynomial over F of arbitrarily high degree.

Let p(x) ∈ K[x] be such an irreducible polynomial with p(x) 6= 0. In a PID, a nonzero
element is prime if and only if it is irreducible. Hence p(x) is prime.

In addition, every nonzero prime ideal in a PID is a maximal ideal. Hence, (p(x)) = I is a
maximal ideal.

Since p(x) was arbitrary, there are infinitely many such maximal ideals.

Now, we can take the intersection of all maximal (left) ideals of K[x]/I to get the Jacobson
radical J(K[x]/I).

(ii) The maximal ideals are exactly (x− c) for c ∈ K[x]/I .

Then, ∩c∈K[x]/I(x− c) consists of polynomials divisble by x− c for all c ∈ K[x]/I .

Hence, ∩c∈K[x]/I(x− c) = 0.

∴ J(K[x]/I) = {0}.
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Problem 4. Let R = M2(K[[t]]) be the ring of 2 × 2 matrices with entries in K[[t]], the ring of formal
power series over a field K (defined in class and on the last homework). Let m = (t) be the
unique maximal ideal of K[[t]], consisting of power series with 0 constant term. Let S ⊂ R
be the subring of matrices of the form:[

K[[t]] K[[t]]
m K[[t]]

]
These are matrices that are “upper-triangular modulo t”. Prove that the Jacobson radical of
S is

J(S) =

[
m K[[t]]
m m

]
Hint: You can show J(S) is contained in the right hand side by finding two simple
S−modules (both 1−dimensional over K) and showing that the intersection of their an-
nihilators is the right hand side. These may take some work to find, they are not exactly the
same as modules appearing in other examples in class. Then you can show the right hand
side is contained in the left imitating techniques demonstrated in class for upper triangular
matrices.

1. Let K be a field and R = K[[t]], the ring of formal power with coefficients in K.

An element is an expression:

f = a0 + a1t+ a2t
2 + ... =

∑∞
i=0 ait

i with addition and multiplication defined as usual.

2a. u ∈ R is a unit if ∃ v ∈ R such that uv = vu = 1.

2b. (Rotman 8.36) If R is a ring, then

(i)
J(R) = {x ∈ R : 1 + rxs is a unit in R for all r, s ∈ R}

(ii) If R is a ring and J ′(R) is the intersection of all the maximal right ideals of R, then
J ′(R) = J(R).

3a. Ann R(M) = {r ∈ R|rm = 0 ∀m ∈M}
(i) Ann R(M) is a 2 sided ideal.

(ii) For any left ideal I ⊂ R, Ann R(R/I) ⊂ I .

3b. J(R) = ∩I⊂R maximalannR(R/I) = ∩S simpleannRS

(a-i) We will show that J(S) ⊂ Z, where Z =

[
m K[[t]]
m m

]
.
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Consider simple module K1 = {
[
x
0

]
|x scalars ∈ K} with R acting by restriction of scalars

along S ⊂ R =M2(K[[t]])
mod (t)−−−−−→M2(K).

Since K1 is a simple M2(K) module, it is also a simple S−module.

We see that
[
m K[[t]]
m K[[t]]

]
·
[
x
0

]
=

[
mx
mx

]
mod t−−−−→

[
0
0

]
. Hence, Ann R(K1) =

[
m K[[t]]
m K[[t]]

]
.

Similarly, let K2 = {
[
0
y

]
|y ∈ K} with R acting as above. We get that Ann R(K2) =[

K[[t]] m
K[[t]] m

]
.

Then, since the Jacobson radical can be defined as intersection of annihilators over simple
modules, we have:

J(S) ⊂ annSK1 ∩ annSK2 = Z, where S is a simple module.

∴ J(S) ⊂ Z.

(The choice of K2 does not seem to be correct).

(a-ii) Now, show that Z ⊂ J(S).

We will use the computational criterion for the Jacobson radical here (8.36).

Let X ∈ Z, i.e. X =

[
tf11 f12
tf21 tf22

]
Let A,B ∈ S be as follows:

Let A =

[
a11 a12
ta21 a22

]
, B =

[
b11 b12
tb21 b22

]
Note, AXB ∈ J(S). The computation is given below.

AX =

[
a11 a12
ta21 a22

]
·
[
tf11 f12
tf21 tf22

]
=

[
ta11f11 + ta12f21 a11f12 + ta21f22
t2a21f11 + ta22f21 ta21f12 + ta22f22

]
=

[
t(a11f11 + a12f21) a11f12 + ta21
t(ta21f11 + a22f21) t(a21f12 + a22)

]
⇒ AXB =

[
t(a11f11 + a12f21) a11f12 + ta21
t(ta21f11 + a22f21) t(a21f12 + a22)

]
·
[
b11 b12
tb21 b22

]
=

[
t(a11f11 + a12f21)b11 + t(a11f12 + ta21)b21 t(ta21f11 + a22f21)b12 + (a11f12 + ta21)b22
t(ta21f11 + a22f21)b11 + t2(a21f12 + a22)b21 t(ta21f11 + a22f21)b12 + t(a21f12 + a22)b22

]
=

[
t[(a11f11 + a12f21)b11 + (a11f12 + ta21)b21] a11f12b22 + t[ta21f11 + a22f21)b12 + ta21b22]
t[(ta21f11 + a22f21)b11 + t(ta21f12 + ta22)b21] t[(ta21f11 + a22f21)b12 + (a21f12 + a22)b22]

]
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=

[
tg11 g12
tg21 tg22

]
∴ AXB ∈

[
m K[[t]]
m m

]
Here

(i) g11 = (a11f11 + a12f21)b11 + (a11f12 + ta21)b21,

(ii) g12 = a11f12b22 + t[ta21f11 + a22f21)b12 + ta21b22,

(iii) g21 = (ta21f11 + a22f21)b11 + t(ta21f12 + ta22)b21,

(iv) g22 = (ta21f11 + a22f21)b12 + (a21f12 + a22)b22.

Next, we use the proposition as follows:

1 + AXB =

[
1 0
0 1

]
+

[
tg11 g12
tg21 tg22

]
=

[
1 + tg11 g12
tg21 1 + tg22

]
Now, we compute the determinant of 1 + AXB.

det(1 + AXB) = det

[
1 + tg11 g12
tg21 1 + tg22

]
= (1 + tg11)(1 + tg22)− g12 · (tg21)
= [1 + t(g11 + g22) + t2g11g22]− tg12g21
= 1 + t(g11 + g22 − g12g21] + t2g11g12

= 1 + t[(g11 + g22 − g12g21) + (tg11g12)]

= 1 + th

where h = (g11 + g22 − g12g21) + (tg11g12).

Note, that a matrix is invertible over a commutative ring ⇐⇒ det(S) = ±1.

Since m = (t), th = 0. Hence, det(1 + AXB) = 1 ⇐⇒ 1 + AXB is invertible.

Therefore, 1 + AXB is a unit in R =M2(K[[t]]) for all A,B ∈ R.

∴, Z ⊂ J(S).

Conclude Since we have shown that J(S) ⊂ Z and Z ⊂ J(S), we have shown that J(S) = Z.
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